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SUPPES ON THEORY OF MEASUREMENT

invoking formal languages, as in the 1959 paper, or treating a statement as
defining a relation on the set R.

Of course, the notion of invariance under transformations plays an im-
portant role in many formulations of physics. A number of Suppes’ papers
concern the concept in various branches of mechanics. It also is a key idea
in dimensional analysis, where it is required that physical laws be invari-
ant under certain classes of transformations called similarities. Recently,
I have shown (Luce, 1978) that within the richer context of measurement
structures tied together, as in physics, by distribution laws, the concept of
dimensional invariance is exactly the same as that of meaningfulness,
namely, invariance of empirical relations under the automorphisms of the
qualitative dimensional structure.

Logical Status of Axioms

Little has yet been said about the constraints imposed on the empirical
relations S; except that S, is always some species of ordering, z. Obvi-
ously, other axiomatic properties must hold among the relations, and
Suppes was one of the first to point out some logical distinctions among
them.

First, there are the universal axioms that are logical consequences of
the representation together with properties of the real numbers. One is
that S|, must be a weak ordering if T’ is >>. Another is that if S; is a ternary
relation corresponding to a binary operation, say o, and if 7, corresponds
to +, then « must satisfy the monotonicity property, for all a, b, c in A,

az bifandonly ifasc 2z boc.

Such axioms as these are called necessary.

Any axiom that is not necessary must, therefore, restrict the class of
possible structures from the most general class having the representation.
Suppes called these axioms structural, and that term is widely used. Usually
the structural axioms involve some sort of existence statement. One ex-
ample is the solvability axioms that assert the existence of a solution to an
empirical equation. For example, in a structure {4, Z, o>, we often as-
sume that for all ¢. & in 4 with ¢ > b, there exists cin 4 such thata ~ boc,
where ~ denotes both = and <. Sometimes the existential nature of the
axiom is masked and combined with another type of axiom into some
form of topological continuity.

A second classification is into first and second order axioms. Because
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the representation is usually some sort of ordinary numerical structure
the cardinality of the empirical structure must in some way be restricted.
The usual restrictions are either finiteness or the existence of a countable
order-dense subset or some version of the Archimedian property, the
assertion that positive numerical intervals are comparable. Such axioms
are second order ones, and either one is included or the representation has
to be modified. Recent studies (Narens, 1974a; Skala, 1975) have shown
that it suffices to deal with versions of non-standard reals (Robinson,
1966).

A third sort of question about the axioms is their consistency and in-
dependence. In principle, one could ask about their categoricity, but meas-
urement structures are in practice never categorical. Consistency is usu-
ally evident since the intended numerical representation is a model of the
axioms. Independence is of course established in the usual way by exhibit-
ing models that satisfy all but the axiom in question. For example, Suppes
in his first publication (1951) took pains to give a system of axioms for
extensive measurement which are independent. (He also improved on Hold-
er’s system by weakening the structural axioms, but his system has long
since been superseded by better ones.) Often, however, as for example in
axiomatizations of Boolean algebras, the most economical set of independ-
ent axioms is less transparent than a slightly more redundant set of
axioms, and so some degree of overlap among the axioms is permitted,
including sometimes dependent axioms. (For example, in a theory of ex-
tensive structures it is a lot easier to include commutativity of - rather
than to deduce it.)

Finiteness

Most of the axiom systems found in the literature of measurement force
the set A of the empirical relational structure to be infinite. At the same
time, these axiom systems involve a finite number of relations and a finite
(usually quite small) number of axioms characterizing these relations.
Although such structures often seem like plausible idealizations of reality,
from two points of view they are not descriptive, First, most theories of the
universe say there are only finitely many objects and so any infinite struc-
ture must not be an accurate description. Second, any set of data we deal
with must be finite, and perhaps the theory of measurement should be
developed only for data structures. Suppes has strongly argued, both in
person and by example, that we should develop finite measurement sys-
tems for, at least, the latter reason. As we shall see, he seems implicitly to
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have rejected the former reason. 1 should point out that many theorists,
and |1 among them, have never been persuaded that the theories should be
confined to the data one happens to have collected, and success in approxi-
mating the finite universe by infinite theories is adequate justification for
using the infinite theories.

Basically three tacks have been followed in developing theories for finite
structures. The first is to suppose that the finite set A is selected in some
a priori way, as in a factorial experimental design, and then the data are
simply the empirical inequalities that are observed. The difficulty of this
approach was made clear in the very fundamental paper of Scott and
Suppes (1958) in which it was established that such structures cannot be
characterized by any fixed set of first order axioms. Scott (1964) and inde-
pendently Tversky (1964) pursued that tack using a kind of axiom schema
that increases the number of axioms with the size of 4. If I have under-
stood Suppes’ reaction correctly, the logician in him was repelled by this
approach. So another avenue had to be followed.

His second approach supposed somewhat implicitly that the tinite data
set can be selected from an unaxiomatized empirical universe in such a
way that certain very special structural relations hold. Put another way,
it is assumed that certain equations can be solved and the elements in-
volved are just those solutions. In practice, the elements selected are those
that end up being equally spaced in the representation or, put another way,
that the integers constitute a suitable representation or, put still another
way, the structure axiomatized is what is called a standard sequence in the
more general theories. A systematic presentation of a number of these
axiomatizations is Suppes (1972a).

They have the great virtue of being rather simple to state and the repre-
sentation theorems are quite easy to prove, so for many teaching situations
they are useful. Nevertheless, they are very incomplete theories. One
would like the general theory to include as subsystems any set of data one
might, for whatever reason, choose to collect, but one should not neces-
sarily expect to be able to construct a representation of every subsystem.
Recently Suppes has shown a way to do this for subjective probability if
one is willing to accept approximate measurement for all but the standard
sequence. I describe this in some detail below.

Decision Theory and Probability

Although Suppes’ first paper concerned the theory of extensive measure-
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ment, all of his subsequent work on specific theories of measurement has
had to do with rational decision making: subjective expected utility theory,
empirical testing of these theories, and axiomatic probability.

Subjective Expected Utility Theory

During the 1950’s, a number of economists, statisticians, and philoso-
phers were trying to understand better and to generalize the theory of ra-
tional decision making that had been sparked by von Neumann and
Morgenstern (1944, 1947, 1953); special attention was given to the axio-
matization of expected utility. The most important development was
pioneered by Savage (1954). Under plausible axioms, his very rich decision
structure (all functions from finite partitions of the states of nature into
events with their range a set of consequences) was adequate, first, to derive
a unique subjective probability measure over the states of nature and then,
using that, to construct a utility function for which subjective expected
utility preserved the ordering of decisions. The latter construction paral-
lelled closely that of the original von Neumann and Morgenstern devel-
opment.

The objections to Savage’s approach are by now well known — many
of the most telling criticisms were first made by Suppes (1956, 1960). Per-
haps the most important ones are. first, the postulation and heavy use of
constant acts, i.e., functions with a single consequence, which in most
contexts seem highly unrealistic, and second, the structural assumption of
arbitrarily fine partitions of the states of nature into equally-likely events,
which also usually is highly artificial. Thus, a strong motive for additional
work during this period was to overcome these major difficulties. With the
exception of Davidson, McKinsey, and Suppes (1955), which provided an
alternative formulation of the von Neumann-Morgenstern model, Suppes’
work at this time concentrated on working out an alternative idea which
had originally been suggested by Ramsey (1931).

Let aEb denote a gamble in which a is the consequence if the event £
occurs and b otherwise. Suppose that £* is an event for which the decision
maker is indifferent between a£*b and 6E*a for all @ and b, then it is easy
to see that if the subjective expected utility property holds, this event must
have subjective probability 1/2. Moreover, for all consequences a, b, ¢, d,

aFE*b 2z cE*d ff u(a) + u(b) > ul(c) + u(d)
iff  w(a) — u(c) > u(d) — u(b).

Thus, if such an event be found, the whole problem of utility construction
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is reduced to the question of when do orderings of gambles based on this
event have a representation in terms of utility differences. So, in sharp
contrast to Savage, Suppes began by constructing the utility function and
only after that did he get deeply involved with the subjective probability
function.

Suppes and Winet (1955) provided an axiomatization of a (quaternary)
relation over A x A for which a relatively unique representation in terms
of utility differences obtains; for later (and simpler) versions of this theory,
see Chapter 4 of Krantz et al. Davidson and Suppes (1956) generalized
this so as to construct both a utility function # and a subjective probability
function P over events such that the following restricted subjective ex-
pected utility property holds: for all consequences a, b, ¢, d and all events
E,

aEb 2 cEd iff w(@)P(E) + u(b)P(E) > u(c)P(E) + u(d)P(E).

And, by invoking the existence of constant decisions, which did not please
him at all, Suppes (1956) gave an axiomatization of the general subjective
expected utility property.

As a theoretical program to replace the Savage structure, this effort was
only partially successful. Suppes was able to get away from the infinite
states of nature, but in the final analysis he was not able to bypass the
constant acts. Moreover, the Ramsey context was as narrow as the ori-
ginal von Ncumann-Morgenstern one. Not until Krantz and I (1971)
(see also Chapter 8 of Krantz et al.) developed a theory of conditional
expected utility did an alternative exist to Savage which is at the same
level of generality, does not invoke infinite states of nature, and does not
require constant acts to construct a utility function over acts. [However,
for criticisms of that structure, see Balch and Fishburn (1974) and a reply
by Krantz and Luce (1974), and Spohn (1977)].

Experiments on Subjective Expected Ultility

Unlike many theorists, Suppes has always insisted that a scientific theory
be put to empirical test. In particular, his work on decision models was
interactive with an experimental program. At the time, the only empirical
work in the area was that of Mosteller and Nogee (1951) who had experi-
mented on the von Neumann and Morgenstern model. Together with the
experimental psychologist Sidney Siegel, Davidson and Suppes (1957)
reported a number of careful studies based on the Ramsey paradigm. In
particular they first found a chance event with subjective probability 1/2
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- a die with one nonsensc triad on threec faces and another on the re-
maining three. Next they sclected two sums of money and arbitrarily
fixed their utility, and then they successively searched for other sums that
were equally spaced in utility. A variety of cross checks were possible. This
is not the place to dctail these studies, except to note that they were very
carefully conducted, they were extensive, and they ran afoul of the perva-
sive problem of error and inconsistency. The latter had been evident in
the Mosteller-Nogee experiment, and it has remained a major stumbling
block in evaluating all algebraic measurement theories.

At the time, Suppes attempted to deal with it by introducing an error
threshold and using methods of linear programming to solve the resulting
set of data inequalities. That had its faults — perhaps the most severe
being that the sure-thing principle need not hold —and so a modified
model and new experiment were reported in Suppes and Walsh (1959). In
a closely related paper, Royden, Suppes, and Walsh (1959) studied the
utility for gambling. Valiant though these experimental efforts were, they
did not lead to a clear decision as to the adequacy of the expected-utility
property and I do not believe that others were persuaded that this was a
suitable way to handle error and inconsistency.

The problem of error has remained formidable, though recently some
positive steps have been taken. One of these is the work of Falmagne
(1976), and the other is the approximate probability model of Suppes
discussed in the next section.

In closing this section, let me remark that the whole issue of testing
decision theories remains quite murky. Suppes’ approach represents one
attack: fit the representation to the data as well as possible and then
evaluate that fit. Of course, the questions are how best to estimate the
huge number of parameters (functions) and how to evaluate the goodness
of fit, neither of which has been satisfactorily answered. Moreover, as-
suming the model is shown to be unsatisfactory, what then? Do we simply
reject the rationality axioms that lead to the subjective expected-utility
representation, or do we try to modify them? An alternative approach is
to study selectively various qualitative properties implied by the subjective
expected-utility representation in order to discover in as much detail as
possible the nature of the descriptive breakdown of the model. I tend to
favor that approach, although I would be less than candid not to admit
that so far it has only focussed attention on failures of the extended sure-
thing principle without informing us about acceptable substitutes and dif-
ferent representations. Of course, many economists and statisticians
argue for the (non-structural) axioms on grounds of rationality, and cer-
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tainly they are compelling canons of rational behavior. For those people
there is no need to study the failures empirically. Rather, as with logic,
one attempts to teach rational behavior without particularly caring to
describe exactly a student’s failures.

Axiomatic Probability

Throughout the time I have known him, Suppes has thought much about
the foundations of probability. His interest has taken at least three dis-
tinct routes. First, he has emphasized the pervasiveness of stochastic pro-
cesses in the sciences, especially the social and behavioral ones, and he has
spent considerable effort on Markov models for learning. Second, he has
repeatedly emphasized (Suppes, 1961, 1963, 1966, 1974a) the anomaly
that the single most important theory of physics, quantum mechanics,
embodies a version of probability inconsistent with the widely accepted
axiomatization of Kolmogorov (1933) which seems to be perfectly ade-
quate for all of the rest of science. Third, from the Bayesian point of view,
embodied in various rational theories of decision making, there is the
interesting foundational question of finding a satisfactory axiomatization
of qualitative (or comparative) probability that possesses a more-or-less
unique numerical representation over a plausible algebra of events. This
has proved to be a good deal more difficult than might, a priori, have been
expected.

It is not relevant for me to discuss here his first interest and I have rela-
tively little to say about the second one; I shall however discuss the latter
more fully, as it is central to measurement.

Suppes (1966) took up the question of how to modify the Kolmogorov
axiom system so as to make it agree with quantum mechanics, His sug-
gestion, if adequate, is certainly simple: just restrict the definition of an
algebra of sets to be closed not under all finite unions of events, but just
disjoint ones. However, the fact that nearly 10 years later he is again
struggling with the problem suggests that he is not satisfied with that solu-
tion. For example, on p. 771 of Suppes (1974a) we find

. . . .[Qluantum mechanics is not a standard statistical theory — it is a peculiar, mysti-
fying, and as yet, poorly understood radical departure from the standard methodology
of probability and statistics. There is as yet no uniform agreement on how the probabi-
listic aspects or statistical aspects of quantum mechanics should be formulated. But it is
widely agreed that there are unusual problems that must be dealt with and that do not
arise in standard statistical theories . . .

The difficulty is that when the standard formalism of quantum mechanics is used the
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joint distribution of noncommuting random variables turns out not to be a proper joint
distribution in the classical sense of probability.

These comments were made in a paper critical of K. R. Popper’s study of
these matters. Among other things, Popper (1959) proposed, without
giving a careful mathematical analysis, a propensity interpretation of prob-
ability. Suppes (1973) suggested that axioms, much like those in Krantz
et al. (p. 222), for qualitative conditional probability may provide a suit-
able axiomatization of propensity. Within that context, he is able to pro-
vide a qualitative axiom characterizing an event whose occurrence is inde-
pendent of the past (e.g., radioactive decay), and to formulate a qualitative
axiom for randomness.

Interesting though this may be, so far as 1 can see the deep issue of
probability in quantum mechanics remains as problematical as ever.

Turning to the role of probability in theories of rational decision
making, recall that Suppes was highly critical of the qualitative axio-
matizations of Savage and de Finetti, because the structural axioms forced
an infinity of events and were otherwise unrealistic. An alternative ap-
proach involving only finitely many events, due to Scott (1964) and
Tversky (1964) is also unsatisfactory because of the *“. . . combinatorial
explosion that occurs in verifying the axioms when the number of events
is large” (p. 166, Suppes, 1974b). So simply imposing finiteness by itself is
not enough. A third problem is that of error and imprecision. His experi-
mental work made it clear that the usual precision of measurement the-
ories is unrealistic. [ndeed, almost all real life uses of probability notions
lack precision.

It is this practical sense of leaving things vague and qualitative that needs to be dealt with
and made explicit. In my judgment to insist that we assign sharp probability values to
all of our beliefs is a mistake and a kind of Bayesian intellectual imperialism. T do not
think this corresponds to our actual ways of thinking, and we have been seduced by the
simplicity and beauty of some of the Bayesian models. On the other hand, a strong
tendency exists on the parl of practicing statisticians to narrow excessively the domain
of statistical inference, and to end up with the view that making a sound statistical in-
ference is so difficult that only rarely can we do so, and usually only in the most carefully
designed and controlled experiments. (p. 447, Suppes, 1976).

His first new approach to the problem of axiomatizing qualitative prob-
ability very neatly combines the idea that there should be a finite set of
events that are equally spaced and resolved very precisely with the idea
that there are many other events which are irregularly spaced in probability
and, indeed, are known only approximately. A little more precisely, the
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structure assumed is {X, &, &, 2 >, where X is a set (sample space), & and
& are both algebras of subsets of X, and = is a binary relation on &. Intui-
tively, & corresponds to all of the events to which probabilities in some
form or another will be assigned, and & is the set of events to which pre-
cise assignments are made. It is assumed that (X, &, 2 ) satisfies the usual
deFinetti axioms - 2 is a monotonic weak ordering, 4 2 ¢ for 4 in¢& ;
and X > ¢ —and that & is a finite subset of & with the two properties:

(1) if Sisin & and S # ¢, then S > ¢.
(ii) if S, Tare in & and S = T, then there is a  in & such that
S~TUV.

He has shown that there is a unique probability measure P on & that pre-
serves the order = and that assigns the same probability to every minimal
event of . For any element A4 of &, one assigns upper and lower probabili-
ties P* and P, as follows: if 4 is in &, then P*(A4) = P (A) = P(A); if
not, then one finds Sand S’ in ¥ suchthat S 2 4 2 Sand S~ S U V,
where Visin & and is minimal, and sets P*(A4) = P(S) and P(4) = P(S").
These upper and lower probabilities can be shown to satisfy a number of
properties previously proposed by Good (1962) and Smith (1961), and
that P*(A4) — P.{(A4) < l/n, where n is the number of minimal ¢lements in
& . Furthermore, if we define the relation x > on & by:

A*> B iff there exists S'in & with 4 = S = B,
then it can be shown that * > is a semiorder on & and

if 4 +> B, then Py(4) > PX(B),
if P,(A4) = P*(B), then 4 = B.

This is derived in Suppes (1974b) and summarized in Suppes (1975, 1976).
In addition, in Suppes (1975) these results are used to generate a compar-
able theory of approximate expected utility.

In my opinion, this is a most interesting development which has wide-
spread potential for the whole theory of measurement. It captures quite
neatly the idea that in measurement there is a precisely measured finite
standard series which in turn is used to provide approximate measurement
of other things of interest.

His second new approach, found in Suppes and Zanotti (1976), involves
a quite different tack, namely to enlarge the scope of the problem. Often
in mathematics this proves a more effective route than trying to axiomatize
just the structures of interest. In this case we replace & by a closely related
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family of random variables as follows. For any 4 in &, its indicator func-
tion A¢ is defined as:

lifaisin A4

0 if ais not in A.

A(a) = {

Of course, Ac + Be¢ is a function, but in general it is not an indicator func-
tion. Denote by &* the algebra of extended indicator functions defined to be
the smallest semigroup under function addition that includes all of the
indicator functions of &. The elements of &* are obviously a subclass of
all the random variables defined on X. The theorem proved is this: A
necessary and sufficient condition for (X, &, =) to have a unique, order
preserving probability representation is that it is possible to extend = to
an ordering == on the algebra &* of extended indicator functions such
that (&*, = *, + ) satisfies the conditions of a positive closed extensive
structure (Krantz et al., 1971, p. 73). It is not yet clear how useful this
criterion will prove to be.

Concluding Remarks

Suppes’ major contributions to the theory of measurement have been, in
my opinion, four.

First, he laid bare, more clearly than anyone before him, the exact na-
ture of a theory of measurement. He has been very exacting about stating
what is empirical and what is mathematical, the types of axioms that are
involved and the degree to which the structural ones can be avoided, and
the limitations on meaningful numerical statements. To a degree this is
didactic and expository, but it is my impression that the field has moved
ahead more rapidly and surely because of his demand for logical clarity.

Second, he has focussed very sharply the distinction between finite and
infinite structures. His original hope of finding finite systems of universal
axioms was dashed by his fundamental paper with Scott (1958) and was
not saved by Scott’s (1964) axiom schema. Following that he persisted in
pushing finite, equally-spaced structures (finite systems with extremely
strong structural axioms), which I have never thought were very satis-
factory until his recent work in approximate measurement of probability.
An alternative tack, pursued by Narens (1974b), is to see the way in which
increasingly large finite structures converge to infinite ones.

Third, he has and continues to contribute to the theory of qualitative
probability and subjective expected utility. His first work in the mid 1950’s
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involved cogent criticism of Savage’s approach and the attempt to work
out and to test empirically a substitute based on utility difference measure-
ment. Although this, by itself, did not resolve the issues, it was surely an
important intermediate step. Recently, he has developed a theory of ap-
proximate probability measurement involving a finite subsystem that is
exactly measured; I find this work exciting and with a potential for wide
generalization.

Finally, and by no means least, Suppes has been an important exposi-
tor of theories of measurement. His chapter with Zinnes (1963) was the
first systematic statement of his outlook on measurement. Later I was
involved in three expositions with him (Luce and Suppes, 1965, 1974, and
Krantz et al., 1971). Other papers of a largely expository character are
Suppes (1960, 1961b, 1967, and 1972b). Often incorporated in these papers
is a concern with history. Perhaps the purest example of this is Suppes
(1971) in which he goes back to Archimedes’ account of measurement and
shows that much of it appears sensible if put into the framework of modern
conjoint measurement theory.

Harvard University
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